Dwarf Galaxy Formation with H₂-regulated Star Formation

Michael Kuhlen, UC Berkeley

The Missing Satellites Problem

Reality

Dark Matter Simulation

There is strong tension between the observed number of dwarf satellite galaxies and the predicted number of dark matter subhalos orbiting our Milky Way galaxy.

The Field Dwarf Galaxy Problem

Marchesini et al. (2009) [see also Fontanot et al. 2009, Cirasuolo et al. 2010]

Semi-analytic models of galaxy formation (including prescriptions for SN feedback!) over-predict the abundance of low mass galaxies and the stellar mass density at intermediate to high redshifts.

The Field Dwarf Galaxy Problem

Hydrodynamical Galaxy Formation Simulations

enzo

Astrophysical Adaptive Mesh Refinement http://code.google.com/p/enzo/

- Cosmological Adaptive Mesh Refinement
- Follows dark matter and hydrodynamics.
- Includes cooling, star formation, supernova feedback, etc.
- Community code
- I've been a contributing developer since 2005.

Hydrodynamical Galaxy Formation Simulations

enzo

Astrophysical Adaptive Mesh Refinement http://code.google.com/p/enzo/

- Cosmological Adaptive Mesh Refinement
- Follows dark matter and hydrodynamics.
- Includes cooling, star formation, supernova feedback, etc.
- Community code
- I've been a contributing developer since 2005.
- ≻ 12.5 Mpc box
- \succ 256³ DM particles (3×10⁶ M_{\odot})
- > 256³ root grid + 7 levels of AMR
- Self-consistent metal cooling
- H₂-regulated star formation

"Standard" Star Formation Simulation

Krumholz & Tan (2007) model Constant SFR per free-fall time SF threshold: $n_{\text{thresh}} = 50 \text{ cm}^{-3}$ $\dot{\rho}_{\text{SF}} = \epsilon_{\star} \frac{\rho_{\text{gas}}}{t_{\text{freefall}}} \propto \rho_{\text{gas}}^{3/2}$ $t_{\text{freefall}} = \sqrt{\frac{3\pi}{32 \, G \, \rho}}$ $\epsilon_{\star} = 0.01$

Kuhlen, Krumholz, Madau, Smith, Wise (2011, arXiv:1105.2376)

"Standard" Star Formation Simulation

Kuhlen, Krumholz, Madau, Smith, Wise (2011, submitted)

"Standard" Star Formation Simulation

Number Density [cm⁻³]

Stellar Age [yr]

Krumholz & Tan (2007) model Constant SFR per free-fall time SF threshold: $n_{\text{thresh}} = 50 \text{ cm}^{-3}$ $\dot{\rho}_{\text{SF}} = \epsilon_{\star} \frac{\rho_{\text{gas}}}{t_{\text{freefall}}} \propto \rho_{\text{gas}}^{3/2}$ $t_{\text{freefall}} = \sqrt{\frac{3\pi}{32 G \rho}}$ $\epsilon_{\star} = 0.01$

Only weak supernova feedback:
> Injection of thermal energy (ϵ=10⁻⁵) in central grid cell.
> No winds!

Stellar Mass Fraction Too High in Low Mass Halos

 $(f_{\star} = \Omega_b, \text{ i.e. } 100\% \text{ gas to star conversion})$

Krumholz & Tan (2007) model Constant SFR per free-fall time SF threshold: $n_{\text{thresh}} = 50 \text{ cm}^{-3}$ $\dot{\rho}_{\text{SF}} = \epsilon_{\star} \frac{\rho_{\text{gas}}}{t_{\text{freefall}}} \propto \rho_{\text{gas}}^{3/2}$ $t_{\text{freefall}} = \sqrt{\frac{3\pi}{32 G \rho}}$ $\epsilon_{\star} = 0.01$

Only weak supernova feedback:
> Injection of thermal energy (ϵ=10⁻⁵) in central grid cell.
> No winds!

Star formation efficiency is too high in low mass halos!

This would greatly overproduce the dwarf galaxy luminosity/mass function.

Stellar Mass Fraction Too High in Low Mass Halos

 $(f_{\star} = \Omega_b, \text{ i.e. } 100\% \text{ gas to star conversion})$

Krumholz & Tan (2007) model **Constant SFR per free-fall time** SF threshold: $n_{\text{thresh}} = 50 \text{ cm}^{-3}$ $\dot{\rho}_{\text{SF}} = \epsilon_{\star} \frac{\rho_{\text{gas}}}{t_{\text{freefall}}} \propto \rho_{\text{gas}}^{3/2}$ $t_{\text{freefall}} = \sqrt{\frac{3 \pi}{32 G \rho}}$ $\epsilon_{\star} = 0.01$

Only weak supernova feedback:
> Injection of thermal energy (ϵ=10⁻⁵) in central grid cell.
> No winds!

Star formation efficiency is too high in low mass halos!

This would greatly overproduce the dwarf galaxy luminosity/mass function.

How to suppress SF in low mass halos

The most commonly invoked mechanism to suppress star formation in low mass dark matter halos is **Supernova/Stellar Wind Feedback** and **UV Photoheating**.

1) UV Photoheating

- Typically only effective below few x 10 9 M_{\odot} halos.
- Difficult to explain complicated SF histories if Milky Way dwarfs

2) Supernova/Stellar Wind Feedback

- Undoubtedly plays an important role in nature!
- Its effectiveness in numerical simulations is very implementation dependent.
- Even hydro simulations with SN feedback have trouble matching observed stellar mass functions.
- In SAMs it typically just means a removal of some/all gas from the SF reservoir below some halo mass, or a halo-mass-dependent SF efficiency.

Is it the whole story? Are we just putting the answer we want in by hand? In my opinion other mechanisms should be considered... For example: Molecular Hydrogen Regulated Star Formation. cf. Gnedin et al. (2009), Gnedin & Kravtsov (2010, 2011)

Bigiel et al. (2008): observational Kennicutt-Schmidt relation from spatially resolved (< 1 kpc) **radio**, **IR**, **and UV** observations of 7 nearby spiral galaxies.

The star formation rate correlates better with molecular gas (H2) than with atomic gas (HI) surface density.

SFR correlates with H₂ even though it's not the primary coolant (CII, CO)!

Pelupessy et al. (2006), Robertson & Kravtsov (2008), Gnedin et al. (2009), Feldmann et al. (2010), Krumholz & Gnedin (2010) Make SFR proportional to $\rho_{\rm H_2}$: $\dot{\rho}_{\rm SF} = \epsilon_\star \frac{\rho_{\rm H_2}}{t_{\rm freefall}} \propto f_{\rm H_2} \rho_{\rm gas}^{3/2}$ How to get $f_{\rm H_2}$ during simulation runtime:

- 1) Full non-equilibrium chemistry with H_2 formation on dust grains, coupled to radiation transfer with Lyman Werner shielding (e.g. Gnedin et al. 2009, Feldman et al. 2010).
- Use results from idealized 1-D RT calculations of H₂ formation-dissociation balance in giant atomic-molecular cloud complexes (KMT09: Krumholz, McKee, & Tumlinson (2008, 2009), McKee & Krumholz (2010)).

Radiative transfer:
$$\hat{\mathbf{e}} \cdot \nabla I_{\nu} = -n \left(\frac{1}{2} f_{\mathrm{H}_{2}} \sigma_{\mathrm{H}_{2},\nu} + \sigma_{d,\nu}\right) I_{\nu}$$

H₂ formation-dissociation
balance: $f_{\mathrm{H}_{1},n^{2}} \mathcal{R} = \frac{f_{\mathrm{H}_{2}}}{2} n \int d\Omega \int_{\nu_{1}}^{\nu_{2}} d\nu \frac{I_{\nu}}{h_{\nu}} \sigma_{\mathrm{H}_{2},\nu} f_{\mathrm{diss},\nu}$
Fully molecular
 $\hat{\mathbf{f}}_{\mathrm{H}_{2}} = \frac{1 - \frac{3}{4} \frac{s}{1 + 0.25s}}{0.6 \tau_{c}}$
LW-shielding opacity
 $\tau_{c} = \Sigma_{\mathrm{HI}} / \mu_{H} Z' \sigma'_{d}$
 $\chi = 71 \left(\frac{\sigma_{d,-21}}{\mathcal{R}_{-16.5}}\right) \frac{G'_{0}}{n_{\mathrm{H},0}}$
FUV intensity in units of the Milky Way's, $7.5 \times 10^{4} \mathrm{cm}^{3}$
(Draine 1978)
formation on dust grains ≈ 1

Pelupessy et al. (2006), Robertson & Kravtsov (2008), Gnedin et al. (2009), Feldmann et al. (2010), Krumholz & Gnedin (2010) Make SFR proportional to $\rho_{\rm H_2}$: $\dot{\rho}_{\rm SF} = \epsilon_\star \frac{\rho_{\rm H_2}}{t_{\rm freefall}} \propto f_{\rm H_2} \rho_{\rm gas}^{3/2}$ How to get $f_{\rm H_2}$ during simulation runtime:

- 1) Full non-equilibrium chemistry with H_2 formation on dust grains, coupled to radiation transfer with Lyman Werner shielding (e.g. Gnedin et al. 2009, Feldman et al. 2010).
- Use results from idealized 1-D RT calculations of H₂ formation-dissociation balance in giant atomic-molecular cloud complexes (KMT09: Krumholz, McKee, & Tumlinson (2008, 2009), McKee & Krumholz (2010)).

With the assumption of 2-phase equilibrium between a Cold Neutral Medium and a Warm Neutral Medium, the minimum CNM density is proportional to the LW flux

$$n_{\rm min} \approx 31G'_0 \frac{Z'_d/Z'_g}{1+3.1(G'_0Z'_d/\zeta'_t)^{0.365}} \,\,{\rm cm}^{-3}$$

and the KMT09 prescription for f_{H_2} becomes independent of the LW intensity.

$$\chi = 2.3 \left(\frac{\sigma_{d,-21}}{\mathcal{R}_{-16.5}} \right) \frac{1 + 3.1 \left(Z/Z_{\rm SN} \right)^{0.365}}{\phi_{\rm CNM}}$$

Krumholz & Gnedin (2010): direct comparison between self-consistent cosmological simulations (ART) and KMT09 model at z=3.

Simulations:

- > Cosmological zoom-in simulations of 3 disk galaxies (Z/Z_{\odot} =0.5, 0.01, 0.18).
- > Non-equilibrium chemical network with H_2 formation on dust (local Z).
- > Star formation, metal enrichment, and "live" radiation transfer of ionizing radiation.
- > LW shielding with Sobolev-like approximation: $S_{\rm D} = e^{-D_{\rm MW}\sigma_0(n_{\rm HI} + 2n_{\rm H_2})L_{\rm Sob}}$

Make SFR proportional to $\rho_{\rm H2}$ No SF density threshold! $\dot{\rho}_{\rm SF} = \epsilon_{\star} \, \frac{\rho_{\rm H_2}}{t_{\rm freefall}} \propto f_{\rm H_2} \, \rho_{\rm gas}^{3/2}$ $\epsilon_{\star} = 0.01$ $f_{\rm H_2} \simeq 1 - \frac{3}{4} \frac{s}{1+0.25s}$ $s = \frac{\ln(1 + 0.6\chi + 0.01\chi^2)}{0.6\,\tau_c}$ $\chi = 0.77 \left(1 + 3.1 \, Z^{\prime 0.365} \right)$ $\tau_c = \Sigma_{\rm HI} / \mu_H \, Z' \, \sigma'_d$

 $10^{-3} Z_{\circ}$ metallicity floor at z=10.

Further metal enrichment from SN injection: 0.25 M_{*}, yield=0.02.

	Make SFR proportional to $\rho_{\rm H_2}$						
2 2 2)	z=4	SMGs		No S	SF density threshold! $\rho_{ m SF} = \epsilon_\star rac{ ho_{ m H_2}}{t_{ m freefall}} \propto f_{ m H_2} ho_{ m gas}^{3/2}$	
Name	$z_{\rm final}$	$ ho_{ m gas,SF}$	$n_{\rm thresh}$	$J_{\rm LW}/J_{\rm MW}$	[Z _{floor}]	Comment	
KT07 KT07_low KT07_high KMT09 KMT09_FLW1 KMT09_FLW10 KMT09_FLW100 KMT09_FLW1000 KMT09_FLW1000 KMT09_ZF4.0 KMT09_ZF2.5 KMT09_ZF2.0 KMT09_ZF210	$\begin{array}{c} 4.0 \\ 6.0 \\ 6.0 \\ 4.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \end{array}$	$tot tot H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2$	$50 \mathrm{cm}^{-3}$ $5 \mathrm{cm}^{-3}$ $500 \mathrm{cm}^{-3}$ — — — — — — — — — — — — —	 1 10 100 1000 		$\begin{array}{c} \mbox{Krumholz \& Tan (2007) SF law} \\ \mbox{lower SF threshold} \\ \mbox{higher SF threshold} \\ \mbox{Krumholz et al. (2009): 2-phase equilibrium} \\ \mbox{one additional refinement level (maxlevel=8)} \\ \mbox{KMT09 with uniform LW} \\ \mbox{background of} \\ \mbox{increasing} \\ \mbox{intensity} \\ \mbox{lower Z}_{\rm floor} \\ \mbox{higher Z}_{\rm floor} \\ \mbox{even higher Z}_{\rm floor} \\ \mbox{at } z = 10 \end{array}$	
-4 10 ⁻³ Z _o metallicity floor at z=10.							
$\begin{array}{ccccc} -1 & 0 & 1 & 2 & 3 & 4 \\ & & \log_{10} \Sigma_{\text{Gas}} \left[M_{\odot} \text{ pc}^{-2} \right] \end{array}$					Furth injec	Further metal enrichment from SN injection: 0.25 M _* , yield=0.02.	

Comparisons with observational SF scaling laws

See also: Gnedin, Tassis, & Kravtsov (2009), Gnedin & Kravtsov (2010, 2011), Feldmann & Gnedin (2010)

The H₂-regulated model reproduce the turnover in $\Sigma_{\rm SFR}$ without an artificial density threshold.

The H_2 -KS relation lies between the Genzel et al. (2010) z=0 - 3.5 relations for "normal" and "luminous mergers".

Metallicity Dependence

see also Bolatto et al. (2011, arXiv:1107.1717)

Our model is able to capture the metallicity-dependence of the rollover in the KS relation.

 H_2 fractions as a function of total Σ_{gas} compare favorably with recent direct measurements in the SMC (Bolatto et al. 2011, arXiv:1107.1717).

Lower mass halos have lower star formation efficiency ($f_* = M_*/M_{tot}$) owing to their **lower metallicity**.

Lower Z \Rightarrow Less Lyman-Werner shielding \Rightarrow Smaller $f_{H_2} \Rightarrow$ Reduced star formation

Halo Mass Dependence of f_{*}

Low Mass Halos (M < 10^{10} M_{\odot})

High Mass Halos (M > $10^{10} M_{\odot}$)

Lower mass halos have lower star formation efficiency ($f_* = M_*/M_{tot}$) owing to their **lower metallicity**.

Lower Z \Rightarrow Less Lyman-Werner shielding \Rightarrow Smaller $f_{H_2} \Rightarrow$ Reduced star formation

Without the 2-phase equilibrium assumption the f_* -suppression mass scale depends on the strength of the LW background.

[It also becomes dependent on a subgrid clumping factor, set to 30 here (Krumholz & Gnedin 2010).]

Observational luminosity functions from Bouwens et al. 2007, 2010.

Dust corrections very important! [Bouwens et al. 2010: 1.55, 0.625, 0.375, 0, 0 mags at z = 4, 5, 6, 7, 8.]

We calculate L_{UV} from SFR: $L_{UV} = 8.0 \times 10^{27} \, (SFR/M_{\odot} \, yr^{-1}) \, erg \, s^{-1} \, Hz^{-1}$

Standard SF overpredicts LF. [except at z=4?]

H₂-regulated SF improves agreement around sensitivity limit (MUV=-18).

H₂ suppression in this realization may be too strong for fainter systems.

Compares favorably with current (uncertain!) determinations utilizing ultra-deep rest-frame UV HST ACS/WFC3 observations coupled with stellar masses estimated from Spitzer rest-frame optical measurements. [Bouwens et al. 2009, 2010, Gonzalez et al. 2010, Labbé et al. 2009, 2010, Stark et al. 2009]

Conclusions

- The are two dwarf galaxy problems in our understanding of the galaxy formation process:
 - 1) The Missing Satellites Problem
 - 2) The Field Dwarf Galaxy Problem
- Both are typically explained by invoking "supernova feedback", but other explanations should be considered. One example is H₂-regulated star formation.
- Cosmological AMR hydrodynamical galaxy formation simulations with Enzo show that regulating SF by the H₂ abundance:
 - Reproduces the cutoff in Σ_{SFR} in the Kennicutt-Schmidt relation at ~10 M_o/pc² without the need for a SF density threshold.
 - Matches the observed H_2 -KS relation as reported by Genzel et al. (2010) at z=0-3.5.
 - Suppresses star formation in M < 10^{10} M_{\odot} halos, because these galaxies aren't able to self-enrich as well as more massive halos.
 - Improves the agreement with (uncertain) observational determinations of the cosmic stellar mass density and SFR density evolution at z>4.
 - Helps to alleviate the dwarf galaxy problems.